Elizabeth M. Berg, Anna E. S. Vincent, Arial J. Shogren, Martha M. Dee Gerig, Jennifer L. Tank, Timothy J. Hoellein, and John J. Kelly ### Microplastics are... - Plastic pieces < 5 mm - A global emerging pollutant Entering food webs of concern - Adsorbing harmful chemicals - Persistent in the environment #### Microplastic sources - Breakdown from larger litter - Terrestrial runoff - Domestic waste water - Fibers from clothing - Personal care products - Not fully removed by treatment - Rivers to downstream ecosystems? Objective: understand the transport and fate of plastics in streams to provide clues on how best to remove microplastics and minimize their input into the environment Experimental Study @ ND-LEEF Notre Dame Linked Experimental Ecosystem Facility ## Research Questions How does retention of microplastics change under different environmental conditions? And What is the depositional velocity of microplastics? ## Depositional Velocity the speed at which a particle is being deposited in a stream (length/time) Low V_{dep} = low retention High V_{dep} = high retention #### Foundational Stream Ecology - Allochthonous (i.e. things from outside the stream) materials travel and are retained in streams at different rates. - We used spiraling metrics designed for measuring organic matter retention and transport. **Table 8** Summary of the transport and breakdown of organic particles in a typical second-order Coweeta stream. This hypothetical stream reach is located 1000 m below the headwaters. It has a discharge of 20 L s⁻¹, an average depth of 10 cm and a velocity of 40 cm s⁻¹ (Webster *et al.*, 1994; Wallace *et al.*, 1995a) | Factor | Sticks | Leaves | FPOM | |--|-----------------|-------------------|-------------------| | Breakdown rate (k, day ⁻¹) | 0.00050 | 0.0098 | 0.00104 | | Biological turnover time ($T_b = 1/k$, years) | 5.5 | 0.28 | 2.6 | | Transport distance (S_w, m) | 1.30^{a} | 1.56^{a} | 34.5 ^b | | Deposition velocity (V_{dep} , cm s ⁻¹) | 3.08 | 2.56 | 0.116 | | Water column concentration (mg L ⁻¹) | - | 0.07 ^c | 2.0 ^d | | Deposition flux (mg m ⁻¹ s ⁻¹) | 0.20 | 1.79 | 2.32 | | Benthic standing crop $(C_b, g m^{-2})^e$ | 306.0 | 228.5 | 156.5 | | Transport turnover time (T_t, h) | 422 | 35.6 | 18.7 | | Transport rate (k', day^{-1}) | 0.057 | 0.674 | 1.28 | | Downstream velocity (V_p , m day ⁻¹) | $0.074^{\rm f}$ | 1.06 | 44.1 | | Particle turnover length (S_p, m) | 148 | 108 | 42400 | # How do changes in benthic substrate size, discharge, and benthic biofilm colonization affect retention of microplastics? Goal: understand factors that drive retention of microplastics in streams, facilitating models that can be scaled-up to larger spatial areas Cobble D₅₀: 5 cm Pea Gravel D₅₀: 0.5 cm Hypothesis₁: Larger substrate size will lead to more microplastic retention. Sand D₅₀: 0.01 cm Mix [Cobble] = [Pea Gravel] = [Sand] #### Discharge #### Benthic Biofilm Colonization # How do changes in benthic substrate size, discharge, and benthic biofilm colonization affect retention of microplastics? ## Methods ### Methods - Released at 3 sites per stream - Collected at 3 locations per release site - Timed collection intervals - 20 sample cups per collection location (X's) ### Calculations #### Calculations Formula $$S_{dep} = -{1 \choose k}$$ $z imes V_W / S_{dep} = V_{dep}$ $z = \text{stream depth}$ $V_W = \text{stream velocity}$ ## Preliminary Results - V_{dep} was ~3 fold greater in cobble and pea gravel streams with extensive benthic algal colonization. - Substrate size does not effect V_{dep}. #### **Impacts** - Results from these studies will aid in - Producing an accurate global microplastic budget - Revealing microplastic accumulation sites - Determining when microplastic is transported and when it is retained. #### Acknowledgements #### Loyola University Chicago: - Dr. John Kelly and Dr. Tim Hoellein - Anna Vincent, Sameer Khan, Janet Ross, Rick Tijerina, Leila Tuzlak, Astha Chokshi, Masooma Sultan, Wesley Heal, Stuti Desai, Justine Nguyen - Ricky and Kimberly - Sam Dunn and Rae McNeish #### University of Notre Dame: - Dr. Jen Tank - Dr. Arial Shogren - Martha Dee Gerig - Brett Peters - ND LEEF #### Funding: - Illinois Lake Management Association - Society for Freshwater Sciences Endowment Fund # Questions?